表中參數(shù)說明:Ri為CRC移位寄存器值(R0為低位),Ci為CRC移位寄存器初值(C0為低位),Di為輸入數(shù)據(jù)(D0為低位),Xi=Di XDR Ci,同一欄中數(shù)據(jù)的運(yùn)算關(guān)系是異或(XOR)。
每次并行數(shù)據(jù)到來時,各CRC寄存器值按表4運(yùn)算關(guān)系更新。最后一個字節(jié)數(shù)據(jù)輸入后CRC寄存器的值(R0~R15)即為該數(shù)據(jù)組的CRC值。模塊設(shè)計(jì)采用了VHDL語言,同步更新R0~R15寄存器的值,從表中看出,一次CRC計(jì)算最多完成4組XOR運(yùn)算。如:R3<=C11 XOFR D7 XOR C7 XOR D0 XOR X0;R15<=D7XOR C7 XOR D3 XOR C3。
3 控制模塊
單片機(jī)擴(kuò)展了RAM后,P2口只有P2.5~P2.7可以用來提供控制信號,不能滿足需要,因而在CPLD內(nèi)部將3路信號擴(kuò)展為8路控制信號,以實(shí)現(xiàn)對各部分進(jìn)行協(xié)調(diào)控制。主要有編碼器和譯碼器的啟動信號、復(fù)位信號、指令標(biāo)志信號、CRC輸出信號等控制信號。

4 性能分析
這里選用1片XILINX XC95144實(shí)現(xiàn)整個數(shù)據(jù)處理模塊的功能,使用軟件平臺是Xilinx Foundation 3.1i。XC95144內(nèi)部有144個宏單元、3200可用門。圖5和圖6分別給出了編碼器和譯碼器的部分時序仿真結(jié)果及其說明?梢钥吹,二者均實(shí)現(xiàn)了協(xié)議要求,編碼器在準(zhǔn)確的位置實(shí)現(xiàn)脈沖位置調(diào)制,譯碼器能準(zhǔn)確地對曼徹斯特碼數(shù)據(jù)進(jìn)行譯碼,并計(jì)算出輸入數(shù)據(jù)的CRC值。
用AT89C51單片機(jī)提供編碼數(shù)據(jù)以及模擬待譯碼曼碼數(shù)據(jù)流對模塊功能進(jìn)行實(shí)測,用示波器觀察各測試點(diǎn)信號,結(jié)果基本上與時序仿真的波形圖相同,達(dá)到了預(yù)期設(shè)計(jì)的目標(biāo)。
本文較系統(tǒng)地介紹了一類遠(yuǎn)距離射頻卡讀寫器數(shù)字處理模塊的設(shè)計(jì),特別在于:(1)采用單片CPLD實(shí)現(xiàn)了射頻卡讀寫器數(shù)字模塊功能,采用了原理圖和VHDL相結(jié)合自頂向下的設(shè)計(jì)方法[2][5],樣機(jī)PCB版面積小,開發(fā)周期短,性能穩(wěn)定。其設(shè)計(jì)方案和思路對其他類別射頻卡讀寫器設(shè)計(jì)具有一定的參考價值。(2)提出了一種快速實(shí)現(xiàn)CRC-CCITT的并行運(yùn)算方法,該方法適用于高速數(shù)據(jù)傳輸場合。
為了提高系統(tǒng)的安全性,可以對對寫入卡中的數(shù)據(jù)進(jìn)行加密處理,即引入數(shù)據(jù)加密模塊,并將整個設(shè)計(jì)配置到一片容量更大的CPLD或FPGA中。





