1 引言
在開關(guān)電源發(fā)展過程中,由于軟開關(guān)技術(shù)的應(yīng)用使開關(guān)頻率和功率密度得到了提高,但是工作頻率的提高卻導(dǎo)致了其內(nèi)部電磁環(huán)境的惡化,影響開關(guān)電源本身和外部電子設(shè)備的正常工作。在抑制EMI方面,抑制干擾源是一個治本的方法。但是將軟開關(guān)技術(shù)與抑制EMI結(jié)合起來,還需要在電路拓?fù)湓O(shè)計和參數(shù)選擇等方面加以研究。
在功率電子技術(shù)發(fā)展過程中,緩沖電路最早是被用來改善開關(guān)元件的工作條件,如避免SCR的誤觸發(fā)和安全導(dǎo)通等。在現(xiàn)代電力電子技術(shù)中,廣泛采用高頻化全控型功率開關(guān)元件,緩沖電路的作用已經(jīng)轉(zhuǎn)變到了減小開關(guān)損耗,實現(xiàn)軟開關(guān)方面。由于緩沖式軟開關(guān)技術(shù)具有其特有的優(yōu)點,各種無損耗、低損耗的無源或有源形式的緩沖技術(shù)正受到越來越密切的關(guān)注、研究和應(yīng)用。通過研究我們發(fā)現(xiàn),緩沖式軟開關(guān)技術(shù)在實現(xiàn)軟開關(guān)的同時,對抑制高次諧波也有比較明顯的作用。本文以buck電路為例,利用互感元件構(gòu)成緩沖式軟開關(guān)電路,并對其諧波特性進(jìn)行比較分析。
2 電路拓?fù)渑c工作原理
電路拓?fù)淙鐖D1所示。開關(guān)元件T在開通時與L2串聯(lián),用以實現(xiàn)對開關(guān)電流的緩沖,延緩其上升的速度,實現(xiàn)開關(guān)元件T的零(低)電流開通;開關(guān)元件T 在關(guān)斷時,二極管D2續(xù)流導(dǎo)通,電容C1對s點電位的下降起到緩沖作用——T兩端電壓上升的速度被減緩,從而實現(xiàn)開關(guān)元件T的零(低)電壓關(guān)斷。互感元件的作用在于實現(xiàn)L3和C2儲能和能量釋放之間的無損壞傳輸。加入隔離二極管D2、D3用以防止C2與 L2 、L3之間構(gòu)成LC諧振,否則將導(dǎo)致開關(guān)應(yīng)力的增加和過渡過程的延長。
圖1 緩沖式軟開關(guān)電路
根據(jù)電路工作狀態(tài),采用時域分段方法分析各區(qū)間的工作情況。電路進(jìn)入穩(wěn)定工作狀態(tài)后,開關(guān)導(dǎo)通時,互感器的等效漏感Lσ與開關(guān)串聯(lián),并且iLσ=0,所以在開關(guān)導(dǎo)通瞬間,iT=0——實現(xiàn)零電流開通。
在開關(guān)導(dǎo)通的同時,L3上感應(yīng)電壓uL3>0,D3導(dǎo)通,給電容C2充電。這個過程一直持續(xù)到uC2=Vi,D2導(dǎo)通,對L3續(xù)流。隨后iL3逐漸衰減至零,D2、D3截止。
開關(guān)斷開時,由于漏感Lσ的續(xù)流,使二極管D2導(dǎo)通。此時電容電壓uc2=Vi,因此開關(guān)元件兩端電壓uT=0——由于電容電壓不能突變,因此C2的緩沖作用實現(xiàn)了零電壓關(guān)斷。
電容C2放電過程帶有一個附加的振蕩過程:當(dāng)uC2=0時,L1、L2的續(xù)流作用使C2反向充電,uC2<0,導(dǎo)致二極管D3導(dǎo)通。此時電流 iL3一部分給電容C2充電,使uC2=0;另一部分流入L1。由于L1上的感應(yīng)電壓為負(fù)值,續(xù)流電流iL3逐漸減小至零,使得L2上的電流也減小至零。這時二極管D1導(dǎo)通,給L1續(xù)流, L1中的儲能向負(fù)載和電容C1釋放,直到下一個導(dǎo)通時刻的到來。仿真波形如圖2所示。從仿真結(jié)果看,開關(guān)元件的開通電流和關(guān)斷電壓被有效地緩沖,其負(fù)載線動態(tài)軌跡緊靠坐標(biāo)軸(圖3)。從uD1、iD1波形可以看出,其關(guān)斷是一個漸變的過程,說明緩沖電路對這種無源開關(guān)元件也具有降低開關(guān)損耗的作用。
圖2 仿真波形 圖3 開關(guān)元件的動態(tài)軌跡
3 諧波分析與比較
在圖4所示的硬開關(guān)buck電路中,PMOS管T和二極管D1作為開關(guān)元件,是主要的躁聲源。除輻射影響外,它的輸入電流和輸出電壓中的諧波對外電路影響較大。










